0=-16t^2+95

Simple and best practice solution for 0=-16t^2+95 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+95 equation:



0=-16t^2+95
We move all terms to the left:
0-(-16t^2+95)=0
We add all the numbers together, and all the variables
-(-16t^2+95)=0
We get rid of parentheses
16t^2-95=0
a = 16; b = 0; c = -95;
Δ = b2-4ac
Δ = 02-4·16·(-95)
Δ = 6080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6080}=\sqrt{64*95}=\sqrt{64}*\sqrt{95}=8\sqrt{95}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{95}}{2*16}=\frac{0-8\sqrt{95}}{32} =-\frac{8\sqrt{95}}{32} =-\frac{\sqrt{95}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{95}}{2*16}=\frac{0+8\sqrt{95}}{32} =\frac{8\sqrt{95}}{32} =\frac{\sqrt{95}}{4} $

See similar equations:

| 11x-3x=7x+5 | | 9=z-7 | | -3.3a=21 | | x^2-2x+3=2(x^2-x+1) | | 2p+(1-p)=4 | | 9z=-4+10z | | g*10=5 | | 6x-4=7x-3 | | 403/10x=33-71/2x | | 25x=20x+30 | | 3(3x-1)-5x=33 | | x5-9=-2 | | –13=m+66 | | 12t+(1+7t)=31 | | 10x+20=9x+19 | | 19.4=t−2.9 | | 7=|x+2| | | -2(6x+5)=134 | | -7b+4=-18 | | 2-3(2x+1)=6x(2-4) | | 7x+9=10x+6 | | 14-3(5t=12)=1-(20t+1) | | 2x-1+38=180 | | 12-x+4x=3(2x+8)/2 | | -y+85=165 | | x+14-3x=-7 | | 14.4m-5.1=11.3 | | x÷8=14 | | -v+199=127 | | -368=8(7n+3) | | 279=208-u | | 2x^2+7+3=12 |

Equations solver categories